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CHAPTER I

INTRODUCTION

In most practical situations, the data one has in hand
do not follow the normal distribution; if the data were nor-
mal, one could use all of the procedures in multivariate
analysis which apply to normally distributed data. In this
paper, a routine method for making the data follow the nor-
mal distribucion more closely is discussed; this method is
to transform the data.

The idea of using certain transformations before
analyzing data is well known. Two of the most common trans-
formations which are usually introduced in an elementary
analysis of variance course are the log transformation and
the reciprocal transformation. These are special cases of
the family of power transformations which was introduced in
a paper by Box and Cox (1964). The family of transformations
is given by

() =fy* -
y y L X#0

log y X=0 .
Several methods are available for estimating the value of )

which will make the data most closely normal. These esti-

mators and related tests of the hypothesis X =A0 are dis-




cussed in the second part of the paper.

Also included is a summary of the analysis of two ex-
periments which are introduced in the paper by Box and Cox.
The power of the tests is studied briefly, using the results
given in an example found in a paper by Atkinson (1973).

In the third section we discuss the influence curve
of an estimator, which is an indicator of the influence of
an observation on the estimator. The influence curves of
several robust estimators of location are given, to intro-
duce the concept. Then the idea of the influence curve is
applied to the estimator of A

Another purpose of the paper is to further study the
power of the tests which are introduced in the second section.
This study of the power follows the method which was out-
lined in the example in the paper by Atkinson. This example,
which uses the biological data from the Box and Cox paper,
is used as the basis for a series of simulations. These
simulations are performed using data other than normally
distributed, to indicate the robustness of the tests, as well
as the power of the tests under distributions other than
the normal. The results of these simulations are given later

in the paper.




CHAPTER 11

t

ESTIMATES OF THE BEST TRANSFORMATION

Box and Cox (1964) worked with the observations
Y1s+-+s¥p» arranged in a nxl vector y,and defined the fam-
ily of transformations

A
,(A) = (()v()‘)))z J . -1 ifA # O
S i 14X—_— (1)

{ log y; if A= 0

where A is a parameter to be estimated. They assumed that
(A
for some * the transformed observations vy would be nor-

mally distributed and would satisf{y the linear model

with constant error variances and absence of interactions.
Here x 1s a matrix of constants and 8 is a vector of para-
meters.

The problem that we wish to examine is the estimation
of A, In the paper by Box and Cox, the method of maximum
likelihood was used to find the value of A for which the
data would most closely follow a normal model with constant
variances and no interactions.

)
| is the vector of transformed observations,

—————————————————



the maximized log likelihood is

Lmax(*) = -% n log 82(A) + (x-1) Ilog Y.1 (2)

n
variance o'and A = I - X(X'X)~1x'.

where G&%()) = 1 ¥ (&)° AX(A) is an estimate of the error

Using this maximized log likelihood, there are two
ways by which an estimate of X can be found. One way is to
plot Lmax (A) versus A , find the point which maximizes the
likelihood and choose that point to be the estimate X of X

Another way to find A is to take the derivative of
the likelihood function, equate it to zero and thus find
the estimate of A. This method should be used if more pre-
cision is desired than that given by plotting the likelihood
function. The derivative of Lmax (A) with respect to A is
™,

}\ 1
dg Lmax(2) = n y CA) Au n+ I logy; (3)
A

y AT Ay U
] - (M) " Ay (X))
or multiplying through by y Ay »
= on y A o ny By Ty )y rog y,
to give a form which is easier to use. On equating this to
zero, we would obtain the maximum likelihood estimate of ),
(A)

where u is the vector with components (iyix log yji).

To simplify the problem we could consider the normal-
ized observations
n (x)
where J = J(* ; y) = dy
5 s i
=1 A i

Using the transformations (1), we now get

~2
Lmax(X) = % n log o (X; z)




w

h’hcre ("ll ( \;_Z_) =£( A) 'AE(A)/H-
Here E(A)= ((Zi( »)) = Yix'l (5)

w1

where y is the geometric mean of the observations.

Box and Cox considered two examples in their paper,

a biological example and a textile example. The biological
example was a 3 x 4 factorial experiment with the two fac-
tors poisons and treatments. They used the transformations
(1) and found the value ; = -0.75 to be the maximum likeli-
hood estimate of A . Thus the familiar reciprocal trans-
formation with A= -1 was used, because the results were
easier to analyze using this transformation and because
customarily a more familiar transformation should be used.
The textile example was a 33 experiment. For this example
they considered the normélized observations E(D and found
the maximum likelihood estimate of ) to be A = -0:106.

Thus for this example they used the log transformation with
»= 0, because the data was easier to analyze and because the
log transformation is more familiar.

One problem with the method used by Box and Cox 1is
that they assumed that for some A , the transformed ob-
servations followed a normal model with constant error
variances and no interactions. It is hard to believe that
for any data vector y to be considered, there exists a value
of X which satisfies these conditions exactly.

A paper by Draper and Cox (1969) addressed this prob-

lem. In their paper, the conjecture was that even if these




three conditions could not be satisfied as exactly for any
A, the estimate of X found by the Box and Cox method might
still be of interest. They showed by example that for this
estimate of A, the resulting distribution was close enough
to normal to be useful. One problem they found was that
the sample size would have to be quite large before the
resulting estimate of )\ was precise. This precision was
measured by finding the variance of the estimatei

Another paper in which the Box and Cox transformations
were considered was a paper by Schlesselman (1971). In his
paper, he stated that the maximum likelihood estimate was
not invariant under scaling of the original observations from
Yto wY unless the X matrix from the linear model contained
a column of ones or, in other words, an additive constant
could be removed from the model. In most practical situ-
ations, the model is defined in such a way that the X
matrix does allow for removal of an additive constant;
therefore, this problem is not important.

In a paper by Atkinson (1973), the Box and Cox maxi-
mum likelihood test statistic was expressed in the form

T, =0 -2 {Lmax( o) - Lmax(®); I2 (6)

where ) is the estimate of A from the maximum likelihood
method and AD is the exact value of A . Since Ty 2 has an
asymptotic x12 distribution, the statistic T; has a standard
normal asymptotic distribution. Since this statistic has

an asymptotic normal distribution, a test was desired which
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would have an exact distribution. Exact tests could thus be
made instead of tests depending on an asymptotic distri-
bution.

Andrews, in a 1971 paper, derived an exact test
statistic for testing A =X, which also had the advantage of
being computationally simpler than the maximum likelihood
statistic. To derive his test statistic, Andrews started
with the transformations (1) and assumed that for some ) ,
the vector of transformed observations X(A) could be ex-

pressed in the form

(%
B mRAE (7)

where X and B are as defined previously and e is the vector
of errors, with mean O and varianceoy
He assumed that the values X(Ao), which are the trans-
| formed observations at the true value of 2, follow a Taylor

expansion about Ao given by

(Ao =
vy UTXBev(A-rg) + e L8

where the remainder terms in higher powers of X were ig-

nored. The vector v was defined by
v T ((v;)) = | ay; (N

oA =Xy
The vector VvV depends on y, so we must somehow modify this

' vector to construct a test statistic. This was accomplished
by calculating the vector v defined by
A ~ A
! V=(vy) = fay; (M

ettt (10)
oA >\=)\o,x=i




where the values ¢ are the fitted values of y, given byy =

(X’X)"IX'X (2, The test statistic was then derived using
the method given in Milliken and Graybill (197)). The re-

sulting statistic was

G X(U'AXA .

sy (V'A® %
(as expressed in Atkinson) where Sy
2

2 is an estimate of the

error variance Oy This statistic has an exact t distri-
bution; it would have a standard normal distribution if the

Z were known.

variance O
One good aspect of Andrews' test is given in his claim
that his test is less sensitive to outliers, and by impli-
caticn to distributions with heavier tails than the normal.
Andrews supports his claims by analysis of Box and Cox's two
examples using his test for both of the Box and Cox examples
and also for the biological example with one additional out-
lier added. His test is affected much less than the maximum
likelihood test by addition of the outlier. One purpose of
this work is to construct a more formal study of Andrews'
conjecture by making an analysis using heavier-tailed dis-

tributions than the normal distributions from Box and Cox's

. examples.

In the paper by Atkinson, a comparison of three tests
was given. The three tests were the Box and Cox and Andrews
tests and another test derived by Atkinson. Atkinson de-
cided to consider another test for two reasons: he wanted
a test which was easy to compute and had higher power than
the others, and also a test which did not neglect the re-

mainder as the Andrews test did.
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Atkinson expressed his test in the form which follows,

()
using the transformed observations z given in (5):2
TD = - :( Q‘Aw(z)
o = (12)
S WLZ) Aﬂ’“i]% 4
£5) (A 36 W . :
where “=3z ~ /3x and s; 1is an estimate of the vari-

w
2
4

ance ¢“ of the values E(A). The test he derived was a

N

form of the locally most powerful test.

In order to compare the three test statistics T‘U
TA and T, Atkinson performed a series of simulations using
the model given in Box and Cox's biological example. To
determine the power of these tests, simulations were per-
formed using different values of X and the percentage of
tests which were significant in each case was counted. He
also gave a plot of these results, which indicated that
Andrews' test Tp was much less powerful than the other
two, especially at large distances from the true value of ) ,
but that the other two tests werec similar in power.

It is questionable how good the results in Atkinson's
paper are because he only considers one numerical example.
He mentions this problem briefly, but since he has only done
this one example, the conclusions must be based on the re-
sults of his example. Later in this paper, the results of
further simulations which were performed in this manner
using distributions other than normal will be given.

A1l of the tests which have thus far been considered
were constructed on the assumption that for some) , the

transformed observationszi(x) will follow a normal distri-

bution. In a later paper by Hinkley (1975), robust analysis
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was used to find another way to estimateX . In this paper,
he did not assume any distribution for the transformed ob-
servations. He wished to find a value of ) for which the
transformed observations had a symmetric distribution.

If there are n independent and identically distributed
random variables Y1, ..., Y,, then the value of » for which
the P andl-p quantities are symmetric about the median is
the value that is desired. Since this will be expressed
in terms of the ordered values of Y;, ..., Yn , they will
be denoted by X;< ... <X - The value of X that is desired
is the value for which

X Axrx i Xn}r+1 - X ! (13)
wherer = (np] and X is the median of the random variables.
The two solutions to this equation are ) = 0 and another
solution which Hinkley calls T. He excludes the value ) = 0

unless X/Xr=X /X and he also rewrites the equation

n—-r+l

as

Godk) " ¢ WA = 2. (14)
Hinkley states that the estimate T of A has an asymptotic
normal distribution and he derives the asymptotic variance
of T .

In his discussion, Hinkley also states that problems
may arise when more complex models are used. He refers to
the Box and Cox biological example and states that different
estimates of A may be found according to which sets of cell

means are examined. This is a large problem because most
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models that we wish to analyze will be similar to the Box
and Cox example. We need an estimate of » which can also
be used in these cases. Therefore the Hinkley estimate is
only useful in certain simplified cases, and not in more
complex cases.

We see that,of the four estimates and test statistics
which we have considered,the evidence given to date in-
dicates that the Atkinson test would probably be preferred
over the other three. It is easier to compute than the
maximum likelihood statistic, possibly more powerful than
Andrews' test statistic and useful in more cases than the
Hinkley estimate.

In this paper, the conjectures made by the other
authors will be analyzed further. We have seen that prob-
lems may occur when distributions with heavier tails than
the normal distribution are considered. The results of
simulations performed using such distributions will be given

and the power of the Andrews and Atkinson test statistics

will be further considered.




CHAPTER II1I
INFLUENCE CURVES

The influence curve is a useful method of representing
how the behavior of a single observation affects an esti-
mator. It indicates how this single observation, which may
be an outlier, changes the value of the estimator, so it
is a measure of robustness. It is actually an expression
of the first derivative of an estimator, evaluated at a
certain distribution.

The influence curve will be denoted IC (x; T,F),
where T is the estimator in which we are interested and F
is the distribution at which it is evaluated. Let §, (y)

be the function defined by 5x(y) =% 0 for y ¢ x
1 fOI’ y_) X

If we view T as a functional depending on F, and denote it
T (F), the influence curve is defined in Hampel (1974) as

IC ( x; T, F) = 1im {T(1- e)F+eéy -T(F) Ve (1)

E#o

Thus it is evident that the influence curve is the first
derivative of the estimator T at the distribution F.
If F is the empirical distribution fur tion based

on a sample Xqys wees Xy the behavior of an estimator

T (Fn) is described by

N 3 ] n p )
n? b (In) = (I) - >I((X]y]vl) s 09 (")

1=1




and thus

HH(T(FH) -T(F))EN(O, ﬁIC(x;T,F))ZdF(x)). (3)
Therefore it is evident from (2) that the influence curve
describes the "influence" of a particular observation on

T (Fp).

A simple example of an influence curve, given in

Hampel, is the influence curve of the arithmetic mean. |
T = r xdF (x) evaluated at any distribution F which has a
finite first moment. If the mean of F is u, then the in-

fluence curve is

I1C (X; T, F) =lim[(l‘€)u+g_x-“] /{
C\to

= X-|.
Thus the influence of a point X on the arithmetic mean is
a simple linear function of the point x, also depending on
the mean ¥ of the distribution. This influence curve is

unbounded, which implies that the arithmetic mean is

not a robust estimator. A plot of this influence curve is
|

given in Figure 1. Plots are also given of several other |

robust estimators in the following figures. These robust i

estimators will fall into two classes: trimmed means and f

M- estimators. Most of the results will be taken either j

from a book by Andrews and several others (1972) or a paper

by Carroll and Wegman (1975).

One simple robust estimator of interest is the trimmed

mean. The - trimmed mean (for O‘a< %) is found by

ordering the observations in a sample, deleting the «n

smallest and gn Ilargest observations, and finding the

arithmetic mean of the rest. The median of the sample is




seen to be the .50-trimmed mean. To find the influence
curve of the trimmed mean, we need the expression for the
a trimmed mean of any distribution F, which is

fi-a F-l(t)dt/, (1-29) (from Hampel).
The influence curve for the - trimmed mean in the special
case of F being a symmetric distribution is given by

IC (x;T,F) = [ F'l(a)/(1-29 for x<F L(a)
x/(1-20) for F-l(a) <x ¥-1 (1-a)
CF l(1-9)/(1-2a) for x <F-1l(a).

If the distribution F is asymmecric, the expression for the
influence curve is more complicated. For 4 = %, the median,
assuming that F has a density f which is symmetric about

zero, the influence curve is

IC (x: T, F ) = sign (x) (S)
2£(0)

Thus, for the trimmed mean, the influence curve is bounded,
so the trimmed mean is a robust estimator. A plot of the
influence curve of the 10 - trimmed mean is given in Figure
2.

Another class of robust estimators of interest is the
class of M- estimators, which show very good robustness
properties. As given in Carroll and Wegman, M - estimators
are solutions, denoted by T, of an equation of the form

0 (6)

L =

i 4 (X.—T) 5
o J
J=1

s
where y is an odd function ands is a scale estimate. The

estimate s can either be found independently or from an

equation of the form
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x(xj-1)  _ (7)

where  is an even function. For Huber estimates, choose

wl xik ) =f-x x <k
x -k<x<k , (8)
k x7k

use a specified function x in (7), and solve simultaneously
for T and S.

The same ¥ function has also been used (by Hampel) a-
long with s=medki-50%l /.6754 to give a different estimator T
found from solving equation (4). These estimators depend
on the value of k which is chosen. The influence curve of
the general M-estimator in the case where F is symmetric is
given in Andrews et al, along with the statement that the
influence curve is much more complicated in the asymmetric
case. The influence curve is proportional to the function
y(x; k). A plot of the influence curve of the M-estimator
with k= 1.5 is given in Figure 3.

The influence curves of the trimmed means and the Huber
estimators, which one notes have the same general shape,
both give some influence to large observations. Hampel

{ proposed an estimator T which gave zero influence to large

observations. He used the median of the absolute deviations

from the median, which he called the median deviation, as

his scale estimate and chose Y to be

¥(x; a, b, c) = | x| Oflx [“a
a ac | x|<b (9)

If‘ x|, b3
cb

- 0 ]X' >C
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These estimates, which are called hampels, depend on the
value of a, b and ¢ which are chosen. Since { is zero for
x| greater than a given constant, zero influence is

given to an observation with Ix | greater than that constant.
A plot of the influence curve of the hampel estimator with
a=2.5 b=4.5and c = 9.5 is given in Figure 4.

These estimators of location are useful for illus-
trating the idea of influence curves, because the results
are somewhat simple. One important point to notice is that
the expressions for the influence curves become much simpler
when the underlying distribution F is symmetric. In the
first part of the paper, power transforms which transformed

data to normality were studied. It will now be useful to

examine influence curves of the estimators of * which were

given there.
First we will consider the influence curve of the
Box and Cox estimate of A in the locatior problem. The Box

and Cox estimate is the maximizing value of the log likeli-

hood given in equation (2) of the previous chapter. In an
unpublished work by Carroll, the influence curve of this
estimate is derived. (This derivation is given in the Ap-

pendix.) The results are separated into two cases, A>0 and

v« 0, If A>0, the influence curve is of the order y S log y
as y*® and of the order logy asy®0 . If A<0, the
results are reversed, giving order logy asys« und),?\
logyas y >0 . Looking at the specific case *= -1, the

e ——————
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influence is of the order 1log y for observations near
5

zero, so this estimate shoul&rgc sensitive to quite small
observations if ‘= -1. A plot of the influence curve ot
the Box and Cox estimate with X= -1 is given in Figure 5.

Next, the Andrews and Atkinson estimates are con-
sidered. The influence curve does not exist in general for
the Andrews estimate,but some information can be found for
A= -1. In this case, more influence is given to obser-
vations near zero than is given by the Box and Cox estimate.
The same type of calculations are used to find the general
influence curve for the Atkinson estimate. If we again
look at the case » = -1, the influence of an observation
near zero is found to be of the order (IOF X)z; thus it is
also more sensitive to small observations than the Box and
Cox maximum likelihood estimate.

The Hinkley estimate is also considered. The results

are not quite as complicated, sc a general expression for

the influence curve can be found. The influence curve is
seen to depend on the derivative of the underlying distri-
bution and the value which is chosen. It is a bounded

function with three discontinuities, so it is not as

sensitive to large observations (if A> Q) or small obser-
vations (if A< @) as the other estimates. It is still not
desirable over the other estimates, though, because the
results it gives are not particularly realistic for more

complicated models.




FIGURE 1. Influence curve for mean.
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FIGURE 2. Influence curve for 10% symmetrically trimmed mean.
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FIGURE 3. Influence curve for M estimate, k=1.5.
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FIGURE 4. Influence curve for hampel estimate,

a=2.5, b=4.5, c=9.5.
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FIGURE 5. Influence curve for the Box and Cox estimate
with A=-1.
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CHAPTER IV

RESULTS OF SIMULATIONS

As stated previously, one of the main purposes of this paper
is to further study the power of two of the tests presented in Chapter
IT “y performing a series of simulations. These simulations were per-
formed using the same method as in the paper by Atkinson.

In Atkinson's paper, he describes simulations which were per-
formed to study the power of three of the tests which were described
in Chapter II. The three tests which he used were the Box and Cox
maximm likelihood test TL’ Andrews' exact test TA and his own test
TD' The simulations were hased on the data from the biological example
in the Box and Cox paper. llere we chosc to perform simulations using
only the Andrcws test TA and the Atkinson test TD’ because this made
the computations easier.

Atkinson's simulations were performed using the data from the
Box and Cox example to generate normally distributed data. In order
to study the robustness of the tests, we chose to generate random
variates from three different distributions. The first of these dis-
tributions was the normal, which was chosen to reproduce the results
given in Atkinson's paper. The other two distributions chosen have
thicker tails than the normal. The first of these was called the con-

taminated nomal; this was 90 per cent N(9,1) and 10 per cent N(9,9).

- . .
The other was the double exponential, which as generated had variance
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2. All three of these types of random variates were multiplied by a

factor of .5/V2. The factor 1/v/2 was chosen to give the double expo-
nential a variance of 1 and the factor .5 in the numerator was chosen
to more closely imitate the work done by Atkinson. The resulting var-
tances were .125 for the normal, .225 for the contaminated normal and
.25 for the double exponential.

The means for all three of the different types of randem variates
were generated in the same way, directly from the Box and Cox biological
data. The first step was to arrange the data into a 48xl vector y; then,

(1)

the data were transformed into a vector y‘"’. Since we were interested in
testing the hypothesis x=-1, this value was chosen in transforming the
observations. The means used were the predicted means i(x)=x(x,x)-lx,l(x).

In order to study the power of the two tests T, and Ty, the sim-
ulations were repeated with different values of A. To accomplish this,

! the cell means were generated in the method above with X=-1, transformed
back to the original scale by taking the inverse of the Box and Cox
transformation y= 1/(1-X(A)) and then transformed again using the new
value of . The values of X used were A=-1.5,-1,-.5,-.05 and .4. The

results of these 15 simulations are given on the following pages in

Tables 1,2 and 3, cxpressed as the number of 200 simulations which

resulted in significant test statistics for the tests TA and TD for

all three distributions. Three different plots are also given in Figures

6, 7 and 2, one for each different distribution. As stated in the paper
by Atkinson, the slope of these plots indicates the power of the tests.

The results of these simulations agree with Atkinson's results
for the nommal case, since the power of the test Tn is greater than

the power of the test Ta for all 5 values of x. The results for the
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other two distributions are partly consistent with the normal case,
because the power of TD is larger than the power of TA at all values
of A for both different distributions. Away from the null hypothesis,
though, there is a loss of efficiency since the power is lower for
both TD and TA than in the normal case. There is also a loss of validity
at the null hypothesis, because the intended 5 per cent tests become
closer to 30 per cent for the Atkinson test and 10 per cent for the

Andrews test.




TABLE 1

Power of the two tests for testing A =-1. Data generated
from the normal distribution with X =k. Number out of 200
simulations significant at the 5 per cent level.

D
k + - + -
- 1.5 0 103 0 181
=1 5 2 9 8
- .5 91 0 175 0
= S0 184 0 200 0
.4 185 0 200 0
TABLE 2

Pover of the two tests for testing A=-1. Data generated
from the contaminated normal distribution with A =k. Number
out of 200 simulations significant at the 5 per cent level.

A Tp
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TABLE 3

Power of the two tests for testing
from the double

==1.
exponential distribution with
out of 200 simulations significant at the § per cent level.

Data generated
A=k,

TA
+ - + -
=5 0 59 0 180
4 6 5 54
40 1 22 36
.05 92 0 163 36
.4 105 0 166 27




FIGURE 6. Power of the two statistics for testing A=-1 using
normally distributed data. Proportion of 200 simulations
significant at the 5 per cent level. A denotes TA— Andrews'
exact test and D denotes TD- Atkinson's test.
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FIGURE 7. Power of the two test statistics for testing A=-1
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FIGURE 8. Power of the two test statistics for testing A

using double exponential data.
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CHAPTER V

CONCLUSION

In the first part of the paper, four different estimates for the
optimal value of A were studied: the Box and Cox, Andrews, Atkinson
and Hinkley estimates. Test statistics for testing r=x, were also
derived for the Box and Cox, Andrews and Atkinson cases. The results
of a numerical example in the paper by Atkinson gave an indication of

the power of the three tests T, -the Box and Cox test, T\-the Andrews
4

)
test and Tn-thc Atkinson test for normally distributed data. Atkinson
concluded that his statistic Tn was similar in power to the statistic

T, and that both were greater in power than the statistic T

| A

A series of simulations was performed to expand on the results
given in the paper by Atkinson. The purpose ot these simulations was to
study the robustness, as well as the power, of the tests 1A and TD'
Whereas Atkinson used only normally distributed data, the simulations
here included normally distributed data, data from a contaminated normal
distribution and double exponential data. The results here indicated

that the power of Tn is greater than the power of T, for all three types

A
of distributions. Tor the contaminated normal and double exponential
distributions, though, the Atkinson test shows an extreme loss of

validity at the null hypothesis and the Andrews test shows a slight loss

of validity. Away from the null hypothesis, the Andrews test shows an
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extreme loss of efficiency and the Atkinson test shows a slight loss
of efficiency.

Since the contaminated normal and double exponential distributions
both have heavier tails than the normal, some problems were expected
when these distributions were considered. Since the Andrews test is an
cxact t-test, the loss of efficiency would be expected, because the
usual t-tests display this loss of efficiency away from the null hypo-
thesis. The loss of validity of the Atkinson test should also be expec-
ted {rom examining the influence curve, because quite large influence
1s given to both large and small observations when A=-1 (which is the
null hypothesis). Thus the conclusion is that the two tests are not
very robust to heavier tailed distributions than the normal, because

of the above mentioned losses of validity and efficiency.




APPENDIX

The Influence Curve for the Box and Cox Estimate

The Box and Cox estimate is the value which maximizes the log
likelihood function
L max(A) = (A-1) %z:logyi

2
- % 108{%'ZY£A) - (%—EygA))z} :

To maximize this function, we take derivatives with respect to A and

let n > ». Evaluating this derivative at the ''true'' value AO’ we obtain

.9
0 =1lim - L A)
= lim(‘nzﬂx)'AgﬁA) + % XFX)'AZ‘X)
n>o
* (X(A)'AXFA))Z log y;)
X=A0
(A,)
() Ay 3 0
=E logy - 1 {Ey - 5%-2_ ) L }
S*(F,xg)
where
(Ao)
E(ZL'T§(f§;££ElJ =0
and (Ao)
E[ g% - 1] = 0

Now, to compute the influence curve, we let AO = X(F) for given F and

define the following equations:

AE) _ g
b T S A ) = Y™

(A (F)) _ T(p))z 1
S°(F)

‘“ﬁlllllllllilﬂlll“

¥, (s T(F),S(F) ,A(F)) = (y
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U5 (yiT(F) ,S(F) A (E)) = log y - éfigg(y(*(F)) R O

Then the functionals T(F), S(F) and A(F) are the solutions to the system

of equations

[, (y3T(F),S(F) ,A(F))dF(y) = 0

for i = 1,2,5.

To derive the influence curve, we first need to define the distribu-

tion functions

Fon) = (1-e)F (y) + €8 (¥)

0 y<x
6 (y) =
x 1 y=2x

where

Then the above system of equations becomes

[; 5 TED ,SE A F)AF () = 0
which implies that
(1-€) fu; (3 T(F) ,S(FL) A (F) ) dF ()

+ efu; (73T(F) ,S(F ) A (F))dSx(y) = 0
or
(1-€) [ (s T(F) ,S(F ) A (F ) dE, ()

v eh; (GT(F),S(F)A(F)) = 0

Next we take derivatives with respect to € and evaluate at € = 0 to
give

9 .
=a .| —T(F +a,.[ .9 Y - 9 ;
1l 3 TEI| 1 2l g2 8| 1+ agl 5o 2 ED| ]

=0 £=0




where the

the above

a32

ajgs Ay and as, are coefficients which will be found from
equations.
1 ! 1
S(F) S(F)
A(F E A(F
OO 1@ 1 GO g
S26) S S(F)

s 2y®) -k y'log y -y |
# A (F) 5 A(F)

E -

0 Piog y) - 1(8)
A (F)

S(F)

yO®) 2 o1 2

E-2—sm— S5 " S

2y A 1) iy(x)|

E SZ(F) oA

X (F)

Ao y - yOE),

~— By M) ey s

s(F)

0
s2 () s(F)
sy - 1@ &y )
s3(F)
A(F) A(F)
S (F ) A (F)

0 290 ey M Donyy 2 )
oA 0/ :
AT (F) A (F)

—.
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Thus the above equations become

= ] = 3 -
s 0 23, 5 TE) ¥
2 T O
0 sy 232|| 3 S| = | ¥;
3
0 dy  Bapll AR Vs

To get the solutions of the matrix equations and find the influence

curve, take the inverse of the matrix to give

o 1 R 175 1
3¢ T(E) D Al by
2
9 ; s 0 - = a ]
2 S| = Say 232 2
) s
3 M i e SR

Now we see that the influence curves are functions of the wi‘

i GAEN)_ e |
| Uy (3 T(E)»S(Fp) A (Fy)) = b ST T(F) i

is of order yA,

A(F 2
U ray?
s4(F)

¥, (3T(FQ) ,S(Fg) 1 (Fp))

is of order yZA and

; b3 (3T (Fy),S(Fy), A (Fy))

log y - —TL__(Y(A(F))- T(F)) %T y(A(F))
S™(F)

is of order yleog y.

Therefore, if X > 0, the influence curve is of the order yleog yasy +» »

and order |log y| as y » 0. If X\ < 0, the results are reversed to give order
log y as y » = and order Iyleog y| as y + 0. An indication of these results
is given in the plot of the influence curve for A = -1 which is given in

Figure 5.
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